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It is shown that the rate of convergence of numerical approximations to the solution 
of hyperbolic partial differential equations is degraded when the solution being sought 
is not sufficiently smooth. A p&order finite-difference scheme may gtve worse than 
pth-order convergence if the (p + I)st derivatives of the solution are not piecewise 
continuous. Spectral methods, which are normally expected to give infinite-order con- 
vergence, give only finite-order convergence if some derivative of the solution is not 
continuous. Near a discontinuity propagating along a characteristic of the differential 
equation, the truncation error of difference approximations is much larger on one side 
than on the other, and it oscillates in sign on the side where it is larger. (It may also 
oscillate on the other side of the discontinuity, depending on the order of the numerical 
scheme used.) Finally our analysis shows that, even if the true solution is not smooth, 
high-order schemes are more accurate than lower-order schemes. 

The formal truncation error analysis of difference schemes for partial differential 
equations can be misleading if the solution being approximated is not smooth. 
For smooth solutions, second-order schemes give errors of order ha (where h is 
the grid interval), fourth-order schemes give errors of order h4, etc. However, 
convergence rates are degraded when the solution is not smooth. There have been 
many studies of the effect of Ioss of smoothness on numerical truncation errors 
[l-3], but most studies have been couched in terms of error norms and have not 
elucidated the local structure of the errors induced by local nonsmoothness. In 
this paper, we study the local structure of errors in the solution of first-order 
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hyperbolic partial differential equation. Some of the results obtained below are 
contained in Refs. [l-3]; it is hoped that the present analysis will make more 
transparent the general results of Hedstrom and Thomee as well as provide detailed 
information on the structure of local errors. 

A prototype of a mixed initial-boundary value problem for a hyperbolic equation 
is the wave equation 

au/at + au/ax = 0 (0 <x < l,t >O) (la) 
u(x, 0) = 0 (0 < x < l), 40, 0 = f(t)0 > 0) (1’4 

The exact solution is 

Iffe P[O, co], then u is Cm except possibly on the characteristic x = t; u(x, t) has 
discontinuous nth order derivatives on x = t (0 < t < 1) iff@)(O) = 0 for q < n 
and f’“)(O) # 0. 

If a pth order numerical scheme is used to solve (l), the maximum error is 
O(P) if derivatives of u(x, t) of order p + 1 are piecewise continuous. If this is not 
the case, it is still true (see below) that the error at a fixed point x > t ‘ahead’ of 
the singular characteristic is O(P) as h ---)r 0, provided that the exact solution is 
smooth off x = t (as follows from f~ Cm) and boundary conditions are imposed 
carefully (cf. [4, 51). Errors in the neighborhood of x = t and ‘behind’ the singular 
characteristic (X < t) are not O(P) but are much larger. The latter errors depend 
only on the local discontinuity and do not depend on details of boundary and 
initial conditions [provided the numerical scheme is chosen to be stable and to 
have boundary-induced errors no larger than O(P)]. Hence, we make the ansatz 
that it is possible to analyze the local errors by replacing the actual boundary and 
initial conditions (lb) by simpler conditions that reproduce the proper discon- 
tinuity on x = t. A suitable choice for the following analysis is periodic boundary 
conditions on 0 < x < 1. A solution to (la) with continuous derivatives of order 
q < n and a discontinuous nth order derivative i%.Qx* lEBt+ - anu/axn Ir+ = D 
is 

k#O 

exp[29rik(x - t)] 

where k is integral. 
With second-order centered differences in space, a semidiscrete approximation 

to (la) is 

wx, t) + 
at 

u2(x + h, t> - uz(x - h, 0 = 0 
2h (4) 
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Strictly speaking, the dXerencedifferentia1 equation (4) is applied only at the 
grid points x = mh, 1 ,< m < iV, where N = l/h is the number of grid points; 
however, the continuous form of (4) is analytically more convenient. As argued 
above, local errors may be studied by imposing periodic boundary conditions and 
initial conditions that match the desired discontinuity structure. It follows that 
the second-order scheme gives the following approximation to (3): 

u&c, t) = D $ 
k=--m (27riL)n+’ 

exp[2nik(x - t sin 2rrkh/2rrkh)]. 

k#O 

Hence, the local error is given by 

e&G t) = u(& t) - %(x, t) = --D ,-fm c2Ti&n+l exp[2vik(x - t)] 
k#O 

X {exp[27rikt(l - sin 2rkh/2?rkh)] - l}. (5) 

The sum in (5) may be estimated as h -+ 0 by breaking it into contributions 
e3’ from 0 d I k I < I/h” and ep’ from I k 1 > l/h” where 0 < a! < 1. The contri- 
bution e!j) is clearly O(h”) for all x, t as h -+ 0, so that by taking iy close enough 
to 1 the contribution of e!j” is asymptotically negligible compared to that of e,) 
for n < 2, as we shall now see. The contribution es) is estimated by 

(1) 
e2 exp[2n+k(x - t)J(exp[it(2vk)3 h2/6] - l>[l + O(h2i3)] 

since kh < 1 for all k retained in the sum. If we choose 2/3 < LY < 1, then the 
resulting sum is a Riemann sum for the integral 

E,(h, t) = C Irn &n-l&~(e@ 
-cc 

where 5 = 2rk(h2t/6)l13, 

C = $ i-n+l(&Q/(j)flP, 

h = (6/h2t)lj3 (x - t). 

The final result is that 

- 

e2tx, 0 - ~f3~@, 0 th + 0) (64 
for all x and any fixed t (0 < t < 1). The analysis leading to (6) is valid only for 
0 < n < 2 [the integral in (6a) being only conditionally convergent for h # 0 if 

5W4b7 
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12 = 01; if n 3 3 then e2 = O(P) since U(X, t) is at least three times differentiable. 
Note that, if n > 4 then &(A, t) is divergent and that (6) is not valid for t N 0 or 
t N 1 when end effects (boundary conditions) are important. 

Similarly, the fourth-order scheme 

au,& 0 + 
at 

8u,(x + h, t) - 8u,(x - h, t) - t&(x + 2k t> + %(X - 2h t> = o 
12h 

(7) 

gives, with periodic boundary conditions, the following approximation to (3): 

k#O 

exp(2&(x - [8 sin 2&h - sin 4nkh]t/l2&h)}. 

Consequently, analysis similar to that leading from (5) to (6) gives the asymptotic 
estimate for the error e4(x, t): 

4x, t> - E4P, t> @ -+ O), 

E,(x’, t) = c’ Irn (-n-leih’C(ei@ - 1) de, 
-02 

(84 

(W 

where 
c’ = (D/277) i-n+l(h4t/30)ni5, (W 
h’ = (30/h”t)ll”(x - t), (84 

provided that 0 < n < 4. If n b 5, the fourth-order scheme (7) gives 
e4(x, t) = O(h4). 

It follows from (6) that, if x - t = O(ha13), then e,(x, t) = O(h2n/3) as h --+ 0 
for 0 < n < 2. On the other hand, it follows from (8) that, if x - t = O(h415), 
then the fourth-order scheme gives ep(x, t) = O(h4”15) if 0 < n < 4. In general, 
a centered pth order numerical scheme gives errors e,(x, t) that behave as 

O(h’Q’+l), n <P, x - t = O(hp/P+l), 
e,(x, t) = 

I 
O(hn+li2), ndp-1, x - t = O(1) < 0, (9) 
W’), otherwise, 

where U(X, t) is at leastp + 1 times differentiable for x # t and has a discontinuous 
nth derivative on x = t. Examples of (9) for x < t are given below. Consequently, 
the L, error is O(h~(n+llz)l*+l) if n < p and O(hp) if 12 > p + 1. 

In addition to giving the order of magnitude of the error, the results (6) and (8) 
give the spatial structure of the asymptotic error near x = t. We have studied the 
functions defined by (6) and (8) both by asymptotic analysis and by numerical 
quadrature for n = 1, when the solution has a discontinuous first derivative. 
Similar analysis applies to other values of n. 
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Asymptotic analysis by the method of steepest descents (see the Appendix) gives 
the asymptotic results (for n = 1) 

EdA t> - -D~-l/22-4/335/12h2/3t1/3~--5/4 exp[-2(A/3)sP], (A - + a>, (104 

,??,(A, t) N D,-1/22-6/335/12h2/3t1/3 1 h I-5/4[cos(2 ) A/3 j312) + sin(2 1 h/3 I”/“)], 
(A -+ -co), (lob) 

where A is given by (6~). Similarly, it is found from (8) that (for n = 1) 

E4(x, t) N D?r-l/22-29/a03--1/557/40( dz - 1)-1/2h4/5tllS(~‘)-7/~ 

* exp[-16(X/20)5~4]{sin[16(h’/20)5~4] 
- (d/z - 1) co~[16(h’/20)~/~]}, (A’ + + ~1, (1 la) 

E,(h’, t) N D,-~/22-~/~3-~/~57/40h4/~t~/~ 1 A’ )--7/s 

* [cos(4 1 A’/5 15i4) + sin(4 1 A’/5 j5’4)], (A’+ -a) (llb) 

where X is given by (8d). It follows from these asymptotic results that the error 
decays exponentially ahead of the discontinuity at x = t but decays only alge- 
braically behind the discontinuity. Notice also the leading error oscillation 
exhibited in (lla) for the fourth-order scheme, but its absence in (lOa) for the 
second-order scheme. The results (lOa), (1 la) show that, as h -+ 0, the error at 
fixed x - t > 0 is zero to order hPln+l; indeed, analysis of (5) and its analog for 
p = 4 shows that th e error at x - t behaves as hn as h -+ 0. On the other hand, 
when x - t < 0 is fixed, then the amplitudes of E, and E4 are given by (lob) 
and (11 b) as 

( E2 1 N Drr-l/22-5/433/2h3/2t3/4 ( x - t l-514, 

( E4 ( N D,-~/22-~~l~3-~/~h~/~t3/8 ( x - t l-7/5, 

so that if x - t - 1 then ( E, 1 - 8.555 I E4 (. 
The behavior of E,(h, t) and E4(A’, t) can also be studied near h = h’ = 0. 

In fact, it is not difficult to show that both aE,(h, t)/ah and aE,(h’, t)/iSi’ are discon- 
tinuous while both E2 and E4 are continuous at h = h’ = 0. In fact, 

E20, t> - -Dh2/3t1/32-4/S31+-1r(2/3) + 3-3/2(h - 3 1 X I)], @ -+ 01, (12) 

E4Gt t> - -Dh4/5t1/5(3)-1/5[r1 sin(2rr/5) F(4/5) + lo-l(h - 5 1 h I)], 
(A + 0). (13) 

The results (12) and (13) show that the maximum asymptotic error occurs precisely 
at h = h’ = 0, i.e., x = t. Note also that E,(h, t) and E4(A’, t) are infinitely differ- 
entiable for h and A’ nonzero. 
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Kreiss (private communication, cf. [5]) has suggested an improved fourth-order 
scheme. The local asymptotic error is given by (8) with C’ decreased by a factor 
61j5. In effect, h can be 61j4 N 1.57 times larger to achieve the same local error 
bound; the same improvement holds for smooth solutions [5]. 
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.70 x 

I / I- 

FIG. 1. Comparison of asymptotic and actual local error for second-order scheme (4) for 
solution of (1) withf(t) = sin 2~f when h = l/40. The results are plotted at t = .6. Solid curve: 
,?$(A, t) plotted as a function of x. Circles: local error at grid points x = nh. 

In Fig. 1, we plot E,(h, t) for h = l/40, t = .6, D = 27r as a function of X. The 
solid curve is obtained from numerical values of E, determined by quadrature 
(along the steepest descent path to minimize difficulty with the oscillatory integrand 
of E,). The data points are the result of numerical integration of the second- 
order difference scheme (4) with the boundary and initial conditions (lb) and 
f(t) = sin 2rt. This choice of f(t) gives discontinuous first derivatives (n = 1). 
Outflow boundary conditions are applied at x = 1 to ensure formal second-order 
truncation error and the difference equations are integrated with h = l/40 and 
Adams-Bashforth time differencing with time steps sufficiently small that time 
differencing errors are negligible. The data points give the pointwise error between 
the finite-difference and exact solutions to (1) near the discontinuity at x = t = .6. 
Notice the excellent agreement between the theoretical curve for E, and the actual 
error e, despite the approximations concerning boundary and initial conditions 
that entered the theoretical analysis. 

A similar comparison between e4 and E, is given in Fig. 2. Here h = l/40, 
t = .6, f(t) = sin 27rt. Again, the difference equation (7) is integrated applying 
(lb) and suitable difference approximations at x = h, 1 - h, 1 to ensure the formal 
fourth-order property of the scheme. The agreement between the theoretical and 
finite difference results is excellent near the discontinuity. 
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FIG. 2. Same as Fig. 1 only for fourth-order scheme (7). Solid curve: E&i‘, i) plotted as a 
function of x. Circles local error at grid points x = nh. 

For comparison, we have also solved the system (1) using a spectral method 
based on a Gale&in approximation using a Chebyshev polynomial expansion of 
U(X, t) [5]. This scheme is formally infinite-order accurate, i.e., the error goes to 
zero faster than any power of h = l/N as N -+ co, where N is the number of 
retained Chebyshev polynomials, provided U(X, t) is infinitely differentiable. How- 
ever, if u(x, t) has a discontinuous nth derivative the error is O(h*) in the neighbor- 
hood of the discontinuity. We have not found a completely satisfactory theory of 
this local error but numerical experiments confirm that the maximum error when 
n = 1 is roughly Dh/2rr (cf. [5]). The basis for this estimate is the following 
argument. When 0 < t < 1, the discontinuity is located in the interior of the 
interval 0 < x < 1. A variation of the argument that led to (5) suggests that the 
local error is given by 

e&z, t) = -D 1 (27ii$fl c?“~~(~-~) 
Ikl>Nla 

so that the maximum error occurs at x = t and is given roughly by 

&it, t) NDi-~-~-12-~h~~-l (15) 
The cutoff N/n is used instead of N in (14) because of the special structure of 
Chebyshev polynomials whereby 7r polynomials are required per wavelength of 
smooth solution [5]. The relation (15) is in excellent agreement with numerical 
experiments [5]. However, this cannot be the whole story since (14) predicts that 
the error is symmetrical about x = t while calculations show that it is not. 

In Fig. 3 we have plotted the actual errors e2, e, and e, for the second-order, 
fourth-order, and Chebyshev schemes, respectively, with h = l/40, t = .6, and 
the boundary condition f(t) = sin 2rt. It is apparent that higher-order schemes 
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FIG. 3. Local error in numerical solution of (1) withf(t) = sin 2nt, k = l/40 at time t = .6. 
Curve 1: second-order scheme [Es. (4)]. Curve 2: fourth-order scheme [Eq. (7)]. Curve 3: Spectral 
(Chebyshev) scheme using N = l/k polynomials [5]. 

have smaller local errors. In fact, even with roughly 10 % local error, as in Fig. 3, 
Chebyshev (spectral) schemes require at least a factor two less resolution to achieve 
the same accuracy as fourth-order schemes while fourth-order schemes require a 
factor two less resolution than second-order schemes, as shown previously [6]. 

The theory of local errors presented here also explains the ‘wakes of bad numbers’ 
observed in test problems of two-dimensional advection of a passive scalar [7]. An 
example, is given in Fig. 4: the two-dimensional initial conical distribution of scalar 
A@, v) shown in perspective in Fig. 4(a) in (x, y, A) space is subjected to uniform 
rotation about the center of the plotted X, y space. Details of initial conditions 
are given in Ref. [7]. The result after one full revolution using a 32 x 32 space 
grid and a second-order (Arakawa) scheme is shown in Fig. 4(b). If the simulations 

FIG. 4(a). Threedimensional (x, y, A) perspective plot of initial conditions used in scalar 
convection test problem. 
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FIG. 4(b). Three-dimensional (x, y, A) perspective plot of the A(x, y, t) field obtained after 
one revolution using the second-order Arakawa scheme on a 32 x 32 space grid. 

were exact Fig. 4(b) would be identical to Fig. 4(a). According to the theory of the 
present paper, the large amplitude error waves are mostly due to the discontinuous 
slopes (sharp corners) of the initial conical distribution. 

We have also studied the behavior of local errors when n # 1. An important 
case is IZ = 0 where the solution exhibits a jump discontinuity at x = t. In this case, 
it is not difficult to show from (6) that 

(16) 

where sgn h is the sign of A and Ai is the Airy function. Consequently, E,(h) 
decays exponentially as A -+ + co, oscillates and decays algebraically as I A I-3/4 
for A --+ - co, and approaches +-D/3 as ;\ - 0+ and -2D/3 as h -+ 0-. Similarly, 
the fourth-order scheme (7) gives E4(h) that decays exponentially as ;\ -+ +co, 
algebraically as 1 A )-5/* for h -+ -co, and approaches +2D/5 as h + 0+, and 
-3015 as A + 0-. 

Finally, we take issue with the often repeated argument that low-order numerical 
schemes are the most appropriate for the simulation of discontinuous solutions. 
The present paper shows that, as the order of the schemes increases, the maximum 
local error and the errors for fixed x < t decrease substantially. Also, as the order 
of the scheme increases so does the spatial frequency of the spatial error oscillations 
in the region x < t, x - t = O(1). Consequently, if dissipation is added to smooth 
the solutions, the required dissipation can be smaller and more localized with 
high-order schemes, so that dissipative terms have less effect on the solution outside 
the discontinuous layer. 

APPFNDIX 

In this Appendix, we outline the application of the method of steepest descents 
to the integral representation (6a) of E,(h, t) as h -+ -co in order to establish the 
asymptotic result (lob). Similar calculations establish (lOa) and (11). 
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Setting LY. = (I X \/3)1i2 and 6 = W, it follows from (6a) that, for X < 0, 

E,(X, t) = ca-" 1-1 p-l~-3q&*~~ - I)&. (A-1) 

Next the contour of integration (real axis) in (A.l) is deformed into a contour r 
which passes above 0 in the complex s-plane, so that 

E,@, t) = &-?I [j=rS-"-lefa'b8-3sl ds _ ~rS-"-le-3i.as h-j. 64.2) 

The second integral in (A.2) is identically zero, as shown by closing the contour T 
in the upper half-plane. 

The method of steepest descents is applied to the first integral in (A.2) as follows. 
The saddle points of the exponential integrand occur where d(s3 - 3s)/rls = 0, 
i.e., s = fl. The contours of steepest descent through the saddle points s = rtl 
are the curves 

Im[io13(s3 - 3s)] = F2a3, Re[io13(s3 - 3s)] < 0. (A-3) 

The curve of steepest descent through the saddle at s = 1 is the curve F, 

u = ((l/3) 242 - 1 + (2/3) u-l)lj2 sgn(u - 1) (u > 0) 

where s = u + iu. Similarly, the curve of steepest descent through s = - 1 is .F, 

u = ((l/3) ZP - 1 - (2/3) r1)lj2 sgn(-u - l), (u < 0). 

Notice that because of (A.3) the exponential integrand of (A.2) goes to zero as 
s -P co along the curves I’, and r2 . Consequently, the first contour integral in 
(A.2) can be deformed into a sum of integrals over r, and I’, . Consider the leading- 
order behavior of 

II = I 
S-n-lei.3b3-3s) ds 

r1 

as OL + 00. Since du/du = - 1 on r, at s = - 1, it follows that 

I1 - I 
S-n-lei~s(s3-3s) ds 

(a-+ a> 
rl' 

where T’,’ is the line segment 1 u 1 < E, s = - 1 + (1 - i) u with E = E(CX) chosen 
so that 0 < G(LX) < 1, a3/“~(~) + co as CL + 00. Consequently, 

I1 - (-1)-“-l (1 - i) @aa 
s 

m @aSus du (a+ co) -02 
64.4) 

= (-1)-"-l +/36-1/3a-3/3(1 - i)@i~'. 

The integral over r2 necessary to complete evaluation of (A.2) is evaluated 
similarly. The final result of these calculations is (lob). 
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